Докажите, что для любого натурального n верно равенство:
(n-1)!+n!+(n+1)!=(n+1)^2(n-1)!
(n-1)!+n!+(n+1)!= (n-1)!+n(n-1)!+n(n+1)(n-1)! = (n-1)!(1+n+n(n+1)) = (n-1)!(1+n+n?+n) = (n-1)!(1+2n+n?) = (n-1)!(1+n)?
Поставь лучший: з
Оцени ответ
Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Алгебра.
Найти другие ответыАлгебра, опубликовано 08.11.2018
Алгебра, опубликовано 08.11.2018
ЛНОДУ
линейное неоднородное дифференциальное уравнение
y''-y'-2y=sin2x
Алгебра, опубликовано 08.11.2018
Напишите выражение тождественно равное единице, деленной на sin квадрата а
Алгебра, опубликовано 08.11.2018
Алгебра, опубликовано 08.11.2018